doi: 10.52899/24141437_2025_01_107
УДК: 538.975
Исследование структуры, фазового состава и механических свойств аддитивно выращенного композита на основе Ti-6Al-4V/B4C с использованием синхротронного излучения
Герцель И. С.,
Купер К. Э.
Язык статьи: русский
Ссылка для цитирования: Герцель И.С., Купер К.Э. Исследование структуры, фазового состава и механических свойств аддитивно выращенного композита на основе Ti-6Al-4V/B4C с использованием синхротронного излучения // Труды Санкт-Петербургского государственного морского технического университета. 2025. Т. 4, № 1. С. 107–114. DOI:https://doi.org/10.52899/24141437_2025_01_107
Аннотация
Актуальность. Создание металлокерамических материалов представляет собой комплексную задачу, где управление структурно-фазовым составом играет ключевую роль в достижении требуемых физико-механических свойств. В работе изучается влияние температуры предварительного нагрева подложки на структурно-фазовый состав и микро-твердость титаноматричных композитов, полученных методом прямого лазерного выращивания. Основной проблемой создания металлокерамических композитов является горячее растрескивание. Применение предварительного нагрева подложки является перспективным подходом к снижению термических напряжений и минимизации дефектов, таких как трещины и поры. Разработка технологий формирования бездефектных металлокерамических композитов имеет особую значимость для авиационной и аэрокосмической отрасли. Цель — экспериментально исследовать влияние модуля предварительного нагрева подложки на фазовый состав, микроструктуру и микротвердость металлокерамического композита Ti-6Al-4V/B₄C, полученного методом прямого лазерного выращивания. На основе комплексного анализа продемонстрировать технологическую эффективность применения подогрева подложки для формирования металлокерамических покрытий без трещин и пор. Материалы и методы. Для создания композитных материалов используется метод прямого лазерного выращивания с применением модуля предварительного нагрева подложки. Для комплексного изучения данного явления используется синхротронное излучение наряду с традиционными методами диагностики микроструктуры. Результаты. Сравнительный анализ микроструктуры, фазового анализа и распределения микротвердости не выявил существенных изменений при использовании предварительного нагрева подложки. Выводы. Экспериментальные данные позволяют сделать вывод о том, что предварительный подогрев подложки может быть использован как модификация метода прямого лазерного выращивания. Использование предварительного нагрева открывает возможность получения бездефектных композитов в широком диапазоне режимов лазерного воздействия.
Ключевые слова: титаноматричные композиты (ТМК); прямое лазерное выращивание; синхротронная рентгеновская дифракция; рентгенофазовый анализ (РФА); микротвердость; микроструктура.
Список литературы
1. Liu S., Shin Y.C. Additive manufacturing of Ti6Al4V alloy: A review // Mater Des. 2019. Vol. 164. ID 107552. doi: 10.1016/j.matdes.2018.107552
2. Collin M., Rowcliffe D. The morphology of thermal cracks in brittle materials // J Eur Ceram Soc. 2002. Vol. 22, N 4. P. 435–445.
doi: 10.1016/S0955-2219(01)00319-3
3. Sadhu A., Choudhary A., Sarkar S., et al. A study on the influence of substrate pre-heating on mitigation of cracks in direct metal laser deposition of NiCrSiBC – 60 % WC ceramic coating on Inconel 718 // Surf Coat Technol. 2020. Vol. 389. ID 125646. doi: 10.1016/j.surfcoat.2020.125646
4. Fu F., Zhang Y., Chang G., Dai J. Analysis on the physical mechanism of laser cladding crack and its influence factors // Optik. 2016. Vol. 127, N 1. P. 200–202. doi: 10.1016/j.ijleo.2015.10.043
5. Kumar Yadav Nartu M.S.K., Mantri S.A., Pantawane M.V., et al. In situ reactions during direct laser deposition of Ti-B4C composites // Scr Mater Acta Materialia. 2020. Vol. 183. P. 28–32. doi: 10.1016/j.scriptamat.2020.03.021
6. Jia L., Wang X., Chen B., et al. Microstructural evolution and competitive reaction behavior of Ti-B4C system under solidstate
sintering // J Alloys Compd. 2016. Vol. 687. P. 1004–1011. doi: 10.1016/j.jallcom.2016.06.280
7. Bai L.L., Li J., Chen J.L., et al. Effect of the content of B4C on microstructural evolution and wear behaviors of the laser-clad coatings fabricated on Ti6Al4V // Opt Laser Technol. 2016. Vol. 76. P. 33–45. doi: 10.1016/j.optlastec.2015.07.010
8. Zhou S., Zeng X., Hu Q., Huang Y. Analysis of crack behavior for Ni-based WC composite coatings by laser cladding and crack-free
realization // Appl Surf Sci. 2008. Vol. 255, N 5–1. P. 1646–1653. doi: 10.1016/j.apsusc.2008.04.003
9. Kou S. Predicting susceptibility to solidification cracking and liquation cracking by calphad // Metals (Basel). 2021. Vol. 11, N 9. ID 1442. doi: 10.3390/met11091442
10. Gertsel I.S., Fomin V.M., Gulov M.A., et al. Effect of substrate preheating on the cermet coating structure obtained using additive technologies // J Appl Mech Techn Phys. 2023. Vol. 64, N 6. P. 959– 963. doi: 10.1134/S0021894423060032
11. Pegues J.W., Melia M.A., Rodriguez M.A., et al. In situ synchrotron X-ray imaging and mechanical properties characterization of additively manufactured high-entropy alloy composites // J Alloys Compd. 2021. Vol. 876. ID 159505. doi: 10.1016/j.jallcom.2021.159505
12. Ancharov A., Manakov A., Mezentsev N., et al. New station at the 4th beamline of the VEPP-3 storage ring // Nucl Instrum Methods Phys Res A: Accelerators Spectrometers Detectors and Associated Equipment. 2001. Vol. 470, N 1–2. P. 80–83. doi: 10.1016/S0168-9002(01)01029-4
13. Piminov P.A., Baranov G.N., Bogomyagkov A.V., et al. Synchrotron radiation research and application at VEPP-4 // Physics Procedia. 2016. Vol. 84. P. 19–26. doi: 10.1016/j.phpro.2016.11.005
14. Tretyachenko L. Aluminium – molybdenum – titanium. В кн.: Al-Ti-V ternary phase diagram evaluation / G. Effenberg, editor. MSI materials science international services GmbH, 2014. doi: 10.7121/msi-eureka-10.17143.2.3
15. Rogl P., Bittermann H., Duschanek H. Boron – carbon – titanium. В кн.: B-C-Ti ternary phase diagram evaluation / G. Effenberg, editor. MSI materials science international services GmbH; 2004. doi: 10.7121/msi-eureka-10.11050.3.3
16. Materials properties handbook: Titanium alloys / R. Boyer, G. Welsch, E.W. Collings, editors. ASM International, 1994. 1176 p.