doi:
UDK: 534.21 : 534.612

VALIDATION AND VERIFICATION OF THE ACOUSTIC MODEL ON THE PROBLEM OF FLOW AROUND A ROUND CYLINDER

Тряскин Н. В., Ливеринова М. А.

Read full article
Article language: русский

Annotation

The development and improvement of numerical methods for calculating turbulent noise is an actual problem that solves a number of important issues: optimization of constructions to reduce noise and acoustic pollution, determination of sound pressure levels using a mathematical experiment, the technical implementation of which is more economical than a physical experiment. This work is aimed at validating and verifying the acoustic model for the problem of flow around a circular cylinder. The paper presents a review of the literature devoted to the study of hydrodynamic noise. The problem is solved by the method of averaging the Navier-Stokes equations and by the method of large vortices for compressible and incompressible flows. At the initial stage a grid-independent solution was determined for the drag coefficient for the cylinder, and the initial and boundary conditions were worked out. To recalculate the acoustic characteristics from the near field to the far field, the Fox Williams-Hawkings method for three control surfaces and Curls analogy were used. In the main part of the work, the spectra of sound pressure levels for all considered cases are constructed and analyzed. The obtained results are compared with experimental data. In conclusion the main results of the work are formulated. Good agreement between the obtained results and the experiment is noted.
Keywords: CFD, numerical simulation, RANS, LES, acoustic analogies, Curle analogy, FWH method, flow around a cylinder, hydrodynamical noise

Bibliography

1. V. Strouhal, Über eine besondere Art der Tonerregung, Annalen Phys. Chem. (Leipzig) 3(5), 216–251, (1878).
2. J.W.S. Rayleigh, Aeolian tones, Phil. Mag., 29, 434–444, (1915).
3. Gutin L.YA. O zvukovom pole vrashchayushchegosya vinta [About the sound field of a rotating screw] // ZHTF, t.6, vyp.5,1936;
4. Blohincev D. I. Akustika neodnorodnoj dvizhushchejsya sredy [Acoustics of an inhomogeneous moving flow]. – 1946. – 220 s.: il.
5. M.J. Lighthill, On sound generated aerodynamically. II. Turbulence as a source of sound, Proc. Roy. Soc., A. 222, 1–32, (1954).
6. M.J. Lighthill, On sound generated aerodynamically: 1. General theory, Proc. Roy. Soc., A 211, 564–578, (1952).
7. M.C. Jacob, J. Boudet, D. Casalino, M. Michard, A rod-airfoil experiment as benchmark for broadband noise modelling, J. Theoret. Comput. Fluid Dyn., 19(3), 171-196, (2005).
8. Krasheninnikov S. YU., Mironov A. K. O svojstvah techeniya v turbulentnoj strue i eksperimentalnom opredelenii polozheniya istochnikov zvuka [On the properties of flow in a turbulent jet and the experimental determination of the position of sound sources] uchenye zapiski CAGI tom x1 2012 № 4 UDK 532.522.2; 534.83
9. Krasheninnikov S. YU., Mironov A. K. Opredelenie polozheniya istochnikov zvuka v turbulentnoj strue po rezultatam akusticheskih i termoanemometricheskih izmerenij [Determination of the position of sound sources in a turbulent jet based on the results of acoustic and hot-wire measurements] / Moskva. Centralnyj institut aviacionnogo motorostroeniya im. P.I. Baranova, 2011 g.
10. E.Sjoberg. Implementation of Aeroacoustic Methods in OpenFOAM.
11. B.Greschner, F.Thiele, D.Casalino, M.C.Jacob. Influence of turbulence modeling on the broadbandnoise simulation for complex flows
12. Andrey Epikhin, Ilya Evdokimov, Matvey Kraposhin, Michael Kalugin, Sergei Strijhak. Development of a Dynamic Library for computational aeroacoustics applications using the OpenFOAM Open Source Package. 4th International Young Scientists Conference on Computational Science. Procedia Computer Science, v66, 2015, p.150-157
13. Pavlovskij V.A., Nikushhenko D.V. Vychislitelnaja gidrodinamika. Teoreticheskie osnovy: Uchebnoe posobie [Computational Fluid Dynamics. Theoretical Foundations: Study Guide]. – SPb.: Izdatelstvo Lan, 2018.
14. Tkachenko I.V. Sovremennye metody resheniya zadach gidrodinamiki [Modern methods for solving problems of hydrodynamics]: ucheb. posobie. – SPb.: Izd-vo SPbGMTU, 2014. – 59 s.
15. Ali Rami, Tryaskin N.V. Vliyaniye parametrov turbulentnosti na kharakteristiki perekhodnogo rezhima techeniya pri obtekanii profilya NACA 0012 [Effects of turbulence variables on transition flow characteristics over naca 0012 airfoil at moderate reynold number]. Morskiye intellektualnyye tekhnologii, T.2, № 3 (45), 2019, s. 39 – 44
16. Liverinova M.A., Tryaskin N.V. Chislennoye modelirovaniye dvizheniya profilya nad ekranom i opredeleniye yego aerodinamicheskikh kharakteristik [Numerical determination of aerodynamic characteristics of an airfoil in a ground effect]. Morskiye intellektualnyye tekhnologii, № 1-2 (51), 2021, s. 44-50
17. Revell, J.D., Prydz, R.A., Hays, A.P. Experimental Study of Airframe Noise vs Drag Relationship for Circular Cylinders. Lockheed-California Co. 1 R 28074, 25 Feb., 1977


Before: "Proceedings of LKI"

Contacts


Address:
Российская Федерация,
190121, г. Санкт-Петербург,
ул. Лоцманская, д. 3, литера А
аудитория 349
Phone: 8 (952) 266-52-88
Email: journal@smtu.ru