doi:
UDK: 629.5.015.4

OPTIMIZED DESIGN OF BEAMS ON ELASTIC BASE

Миронов М. Ю.

Read full article
Article language: русский

Annotation

The work is devoted to the control of stiffness and strength properties of structures placed on SEF - solid elastic foundations (distributed systems of compliant supports, soils, snow cover, calm liquid surface, fillers of three-layer composites). On the basis of matrix methods of sensitivity analysis, effective iterative algorithms for designing finite element models of beams on elastic foundations of constant and variable along the length of stiffness are constructed and programmatically implemented on the basis of satisfying the Kuhn-Tucker optimality conditions. Beam FEM is used in a variant of the displacement method, analytical and semi-analytical methods for obtaining derivatives from local, as well as integrally space-averaged constructions of displacements, the method of simple iterations with relaxation smoothing, methods for linearizing recurrent relations of optimality conditions and reducing the conditional minimization problem to an unconditional one using Lagrange multipliers . For a finite-element model of a non-prismatic beam on a control system with a large number of FE, the problems of configurations of the minimum mass under a distributed and localized load, with different ratios of the flexural rigidity of the structure and the rigidity of the base, are solved. It is proposed to use optimization as a computational substantiation of the system of intermediate reinforcements to increase the rigidity of the boundary layer between the shell and light filler in "sandwich" structures. Results suitable for application in the creation of effective three-layer structures from polymer composites are obtained. An effective control over the distribution of mass and stiffness over the structure with high relative gains in the isoperimetric formulation is shown. Directions for research into the influence of the nature of the distribution of the base stiffness and taking into account the transverse shear in the beam on the rational distributions of its bending stiffness along the length are determined.
Keywords: indirect optimization methods, sensitivity analysis, beam finite elements, elastic foundation, localization effects, derivatives of displacements, Lagrange multipliers

Bibliography

Streknyova M.A. Modelirovanie izgiba korpusa sudna pri spuske metodom konechnyh elementov, Prikladnaya matematika i informatika: sovremennye issledovaniya v oblasti estestvennyh i tekhnicheskih nauk [Modeling the bending of the ships hull during descent by the finite element method, Applied mathematics and computer science: modern research in the field of natural and technical sciences]. Materialy III nauchno-prakticheskoj vserossijskoj konferencii (shkoly-seminara) molodyh uchenyh 24-25 aprelya 2017 g. – Tolyatti: Izd. Kachalin A.V., 2017, s. 557-562.
2. Mironov M.Yu., The numerical estimate of the overall strength of the hull during the descent, XXII International Conference “Mathematical and computer simulation in mechanics of solids and structures – MCM 2017”, Fundamentals of static and dynamic fracture, September 25-27, Book of Abstracts, St. Petersburg, Russia, 2017, ISBN 978-5-9651-1086-5, s. 131-132.
3. Mironov M.YU., Streknyova M.A. Razrabotka konechnogo elementa balki na uprugom osnovanii s uchyotom vliyaniya poperechnogo sdviga [Development of a beam finite element on an elastic foundation, taking into account the influence of transverse shear], Konf. po stroitelnoj mekhanike korablya pamyati professora V.A. Postnova, 13-14 dekabrya 2017g., Tezisy dokladov, SPb.: Izd-vo FGUP «Krylovskij gosudarstvennyj nauchnyj centr». 2017, s.189-190.
4. Rodionov A.A. Matematicheskie metody optimalnogo proektirovaniya konstrukcij sudovogo korpusa [Mathematical methods for optimal design of ship hull structures], L., Sudostroenie, 1991 g.
5. Mironov M.YU., Rodionov A.A. Nepryamye metody optimizacii v upravlenii svojstvami konechno-elementnyh modelej zhestkih plastin [Indirect optimization methods in controlling the properties of finite element models of rigid plates], «Stroitelnaya mekhanika i raschet sooruzhenij», № 6 (215), 2007 g., s. 58-62.
6. Mironov M.YU., Brens P.A., Rodionov A.A. Upravlenie dinamicheskimi parametrami modelej perekrytij s uchetom deformacij poperechnogo sdviga [Controlling Dynamic Parameters of Floor Models Taking into Account Transverse Shear Deformations], Konferenciya po stroitelnoj mekhanike korablya pamyati akad. YU.A. SHimanskogo. Tezisy dokladov, FGUP GNC CNII im. A.N. Krylova, SPb, 2008 g., s.69-70.
7. Mironov M.YU., Stroganova O.S., Frumen A.I. Proektirovanie mnogoslojnoj cilindricheskoj obolochki podvodnogo apparata [Design of a multilayer cylindrical shell of an underwater vehicle], Trudy Krylovskogo gosudarstvennogo nauchnogo centra. Teoriya korablya i stroitelnaya mekhanika, vyp. 75 (359), SPb., 2013, s. 79-88.
8. Mironov M.YU. K analizu chuvstvitelnosti nestacionarnyh otklikov konechno-elementnyh modelej balochnyh konstrukcij [On sensitivity analysis of non-stationary responses of finite element models of beam structures], Trudy Krylovskogo gosudarstvennogo nauchnogo centra. Specialnyj vypusk 2, SPb., 2020 g., s. 103-109.
9. Mironov M.YU. Optimizaciya mnogoelementnyh modelej konstrukcij s integralnymi ogranicheniyami nestacionarnyh otklikov [Optimization of multi-element models of structures with integral constraints of non-stationary responses], Trudy Krylovskogo gosudarstvennogo nauchnogo centra. № 400, SPb., 2022 g., s. 79-88.
10. Makarov E.G. Inzhenernye raschety v MathCAD 15 [Engineering calculations in MathCAD 15]: Uchebnyj kurs – SPb.: Piter, 2011 – 400 s.
11. Korshunov V.A., Rodionov A.A. Vvedenie v metod konechnyh elementov [Introduction to Finite Element Method]: ucheb. posobie / V.A. Korshunov, A.A. Rodionov. – SPb.: Izd-vo SPbGMTU, 2016. – 89 s.
12. Rodionov A.A. Stroitelnaya mekhanika korablya [Ship building mechanics]: uchebnik / A.A. Rodionov. – SPb.: Izd-vo SPbGMTU, 2013. – 162 s.
13. Postnov V.A., Harhurim I.YA. Metod konechnyh elementov v raschetah sudovyh konstrukcij [Finite element method in calculations of ship structures] / V.A. Postnov, I.YA. Harhurim. – L.: Sudostroenie, 1974. – 344 s.
14. Hog. E, CHoj K., Komkov V. Analiz chuvstvitelnosti pri proektirovanii konstrukcij [Sensitivity Analysis in Structural Design], per. s angl. S.YU. Ivanovoj i A.D. Laricheva p/r N.V. Banichuka, M.: Mir, 1988. – 428 s.
15. Kulcep A.V., Manuhin V.A. Konechnye elementy reber zhestkosti dlya rascheta podkreplennyh plastinchatyh konstrukcij [Finite elements of stiffeners for analysis of reinforced plate structures]. Sb. nauchn.trudov SPbGMTU «Prochnost sudovyh konstrukcij», SPbGMTU, 1994, s.51-64
16. Lukyanova L.E., Manuhin V.A. Matricy zhestkosti sterzhnya pri slozhnom izgibe s uchetom krucheniya. Morskie intellektualnye tekhnologii [Stiffness matrices of a rod in complex bending with allowance for torsion. Marine Intelligent Technologies]. Spec. vyp. №4, SPb, NIC MORINTEKH, 2011, s.3-6
17. Volkov E.A., Manuhin V.A., Postnov V.A. Semejstvo gibridnyh konechnyh elementov dlya dinamicheskogo analiza uprugih system [Family of Hybrid Finite Elements for Dynamic Analysis of Elastic Systems]. Sb. nauchn. trudov LKI «Ustojchivost i dinamika sudovyh konstrukcij», LKI, 1985, s.9-16
18. Diskovskij A.A., Kagadij L.P., Pasechnik I.V. Zadacha optimizacii uprugogo osnovaniya balki [The problem of optimizing the elastic foundation of a beam], Vostochno-Evropejskij zhurnal peredovyh tekhnologij, vyp. 2/5(38), 2009 – s. 47-50.
19. Banichuk N.V., Barsuk A.A., Ivanova S.YU., Makeev E.V., Neittaanmaki P., Tuovinen T. Analiz i optimizaciya ustojchivosti balok na sploshnom uprugom osnovanii [Analysis and optimization of the stability of beams on a solid elastic foundation], ch.1 Balki konechnoj dliny, M.: IPM im. A.YU. Ishlinskogo RAN, preprint №1144, 35 s.
20. Pravila klassifikacii i postrojki morskih sudov. CHast XVI. Konstrukciya i prochnost sudov iz polimernyh kompozicionnyh materialov [Rules for the classification and construction of ships. Part XVI. Design and strength of vessels made of polymer composite materials], ND № 2-020101-124, Rossijskij Morskoj Registr Sudohodstva, SPb, 2020.
21. DNV Rules for Classification: Yachts. Part 2 Materials and Welding. Ch. 3 Non-metallic materials, 2021.
22. International Standard ISO 12215-6, Small craft- Hull construction and scanting, Part 5,6: 2008.
23. H. Dyu Plessi Malotonnazhnye suda iz stekloplastika [Small tonnage fiberglass ships]: per. s angl., L.: Sudostroenie, 1979 g. – 343 s.
24. Pravila klassifikacii i postrojki morskih sudov. CHast XVI. Konstrukciya i prochnost korpusov sudov i shlyupok iz stekloplastika [Rules for the classification and construction of sea vessels. Part XVI. The structure and strength of the hulls of ships and boats made of fiberglass], ND № 2-020101-087, Rossijskij Morskoj Registr Sudohodstva, SPb, 2016
25. Koissin V. and Shipsha A. Modeling of quasi-static response of sandwich structures subject to local loading. In: Proc. of the 6th International Conference on Sandwich Structures (ICSS-6), Fort Lauderdale, USA, 2003;732-741
26. Nazarov A.G. Osobennosti importozameshcheniya zapolnitelej trekhslojnyh konstrukcij iz kompozitnyh materialov v sudostroenii [Features of import substitution of aggregates for three-layer structures made of composite materials in shipbuilding], https://compositeworld.ru/articles/materials/id62becec2f1a59700123c3c44
27. Strelec–Streleckij E.B., ZHuravlev A.V., Vodopyanov R.YU., pod red. akademika RAASN, dokt. tekhn. nauk, prof. A.S. Gorodeckogo, LIRA–SAPR. Kniga I. Osnovy. – Izdatelstvo LIRALAND, 2019.– 154s.


Before: "Proceedings of LKI"

Contacts


Address:
Российская Федерация,
190121, г. Санкт-Петербург,
ул. Лоцманская, д. 3, литера А
аудитория 349
Phone: 8 (952) 266-52-88
Email: journal@smtu.ru